Numerical simulation of pressure and CO₂ saturation above the fractured seal as a result of CO₂ injection: implications for monitoring network design

Liwei Zhang^a, Robert Dilmore^b, Grant Bromhal^b

^a ORISE, National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, PA 15236 ^b Office of Research and Development, National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, PA 15236

ABSTRACT

A numerical model was developed to simulate pressure and CO₂ saturation evolution above a fractured caprock. The fractured region of the caprock was 1,400 m away from the CO₂ injection well. A pressure increase of 10⁵ Pa was observed throughout the formation (10 km x 10 km) above the caprock after 111 years (30 years of active CO₂ injection of 1 million tons per year + 81 years of post CO₂ injection), while the diameter of the CO₂ plume at the formation above the caprock was only 539 m. Therefore, pressure travels much faster than CO₂ plume in the formation above the caprock. CO₂ flux calculation results show that very significant amount of CO₂ leakage (larger than 4% of total CO₂ injected within130 years) occurred when the fractured region permeability was above 10⁻¹⁷ m². If the fractured region permeability was less than 5×10⁻¹⁹ m², the amount of CO₂ leakage was small (less than 0.04% of total CO₂ injected within 130 years). It took 3.2 years for a pressure monitoring well right above the fractured region to detect a CO₂ leakage signal (a pressure increase of 10⁵ Pa). Results presented suggest that pressure response from fluid leakage allows early detection, but CO₂ saturation monitoring may be more useful in locating the source of such leakage.

BACKGROUND

- Deep saline aquifers have the highest CO₂ storage capacity of all candidate geologic storage targets -~1,738 Gigatonnes of CO₂ in North America alone (The North American Carbon Storage Atlas, 2012).
- CO₂ leakage through caprock may be detected by monitoring pressure and CO₂ saturation response in porous and permeable zones above that caprock.
- This study employs TOUGH2 to simulate CO₂ and brine leakage through fractured caprock. The goal of this study is to answer the following questions: 1) how fast a CO₂ leakage can be detected at the above zone monitoring interval (AZMI) above a fractured caprock; 2) how the permeability change of the fractured caprock affects the amount of leaking CO₂ and the time required to detect the leakage.

MODELING CODE AND MODEL SET UP

- Modeling code: TOUGH2
- Model set up: 3-D model with 37,908 active grid blocks
- Eqn-of-state: ECO2N (water, CO₂ and NaCl)
- Isothermal simulation with no heat exchange considered

Model set-up with the location of the fractured caprock (high-permeability zone in red)

Modeling parameters

Parameter	Value	Parameter	Value
Density of rock in Layers	2600 kg/m3	CO ₂ injection rate	31.7 kg/s
1-5		(constant rate from	(1M tons
		t=0 to t=30 years)	per year)
Initial pressure at Z=100	10.1 MPa	Brine residual	0.025
m		saturation	
Pressure gradient	104 Pa/m	CO ₂ residual	0.1
		saturation	
Temperature	47 °C	Capillary pressure	2×104 Pa
Horizontal normoshility	10-13 m ²	Thicknoss of	10 m
Additional permeability	(0.1 D)	conrock lovero	10 111
(storage formation and	(0.1 D)	caprock layers	
Vertical permeability	10-14 m ²	Thickness of the	100 m
(storage formation and	(0.01 D)	storage formation	100 111
formation above caprock)	(0.01 D)	storage formation	
Horizontal permeability	10 ⁻¹⁹ m ²	Thickness of the	90 m
(caprock)	(10 ⁻⁷ D)	formation above	
(,,	(-)	caprock	
Vertical permeability	10 ⁻²⁰ m ²	Salt (NaCI) mass	0.1
(caprock)	(10 ⁻⁸ D)	fraction in brine	
Horizontal permeability	10 ⁻¹⁹ m ²	Porosity (storage	
(fractured caprock)	(10 ⁻⁷ D)	formation and	0.1
Vertical permeability	10 ⁻¹⁷ m ²	formation above	
(fractured caprock)	(10 ⁻⁵ D)	caprock)	
CO ₂ injection period	30 years	Porosity (caprock)	0.05
Post-CO ₂ injection period	100 years	Maximum	130 years
		simulation time	
Domain size	10×10 km		Automatic
Boundary condition	Open	Simulation time	adjustment
	boundary	step	(initial step
			= 100 s)

RESULTS

CO₂ saturation above the fractured caprock Detection threshold: $^{A}S = 0.0025$

CO₂ flux through the fractured caprock

